Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits
نویسندگان
چکیده
Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics.
منابع مشابه
Fabrication of Graphene/MoS2 Nanocomposite for Flexible Energy Storage
In the present work,MoS2 decorated graphene nanocomposite powders were synthesized by laser scribing method.Theobtainedflexible light-scribed graphene/MoS2composites are very suitableas micro-supercapacitors and thus their performance was evaluated at different concentrations.The effect of laser scribing process to reducegraphene oxide (GO) was investigated. The GO/MoS2composite wassynthesized ...
متن کاملProcessing and Properties of Carbon Black- Filled Electrically Conductive Nylon-12 Nanocomposites Produced by Selective Laser Sintering
Electrically conductive polymer composites are suitable for use in the manufacture of antistatic products and components for electronic interconnects fuel cells and electromagnetic shielding. Selective laser sintering (SLS) was used to investigate the fabrication of electrically conductive nanocomposites of Nylon-12 filled with 4% by weight of carbon black. The effect of laser power and the sca...
متن کاملFlexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode
Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conduct...
متن کاملElectrically conductive polymeric materials through polymerization and compatibilization
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Minna Annala Name of the doctoral dissertation Electrically conductive polymeric materials through polymerization and compatibilization Publisher School of Chemical Technology Unit Department of Biotechnology and Chemical Technology Series Aalto University publication series DOCTORAL DISSERTATIONS 116/2012 Field of research Po...
متن کاملApplication of Liquid-Metal GaIn Alloys to Soft-matter Capacitance and Related Stretchable Electronics
Stretchable electronics is an exciting new field of developing technology, allowing devices to undergo large deformations such as, bending, twisting, stretching and compression. As such, they can be easily interfaced with the human body, conforming to its contours and enabling a range of advances in electronic skins. Creating stretchable circuits, however, is not straight forward, as most elect...
متن کامل